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Introduction

Influenza and the Role of Vaccines

The common devastating flu is a highly contagious disease 
caused by the influenza viruses that impact people’s health 
internationally. Influenza is responsible for causing a considerable 
amount of morbidity and mortality annually, particularly during 
the flu season, to the elderly, children, or those with existing 
chronic health complications. Annual flu vaccination is the only 
preventive measure recommended by the authorities for flu 
prevention, such as CDCP and WHO. These vaccines are modified 
annually according to information on the circulating strains from 
worldwide [1-3]. Influenza vaccines are used widely and are highly 
valuable; however, their efficacy is comparatively moderate, from 
40% to 60% of the target population, to prevent symptomatic 
illness depending on the level of cross-reacting, similar antigens 
or immunity reported in the population.

Vaccination effectively minimises detrimental health outcomes 
of influenza; nonetheless, breakthrough infections refer to 
laboratory-confirmed influenza infections among persons who 
have received adequate immunization. These may be due to 
a decline in vaccine-induced immunity, a change of circulating 
strains, or host factors such as the age of patients and co-morbid 
health conditions. Screening for persons at a higher risk of 
developing a breakthrough infection is important not just in 
assessing vaccine efficacy but also in the clinical management 
of infected persons and decision-makers on vaccines. Still, 
the contemporary means of surveillance do not possess the 
necessary detail to disclose a real-time breakthrough, either from 
an individual or community perspective.

The Emergence of Pharmacy Testing Data

Over the past few years, HDT has emerged as a key mode of 
service delivery for infection testing in disease prevention and 
public health. Some large pharmacy service providers, like CVS, 
Walgreens, and Walmart, provide versions of influenza testing 
services, more so during the flu season. These services create 
a massive volume of anonymous diagnostic information, which 
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is still becoming instrumental to the work of public health. 
Compared to conventional surveillance systems, data originating 
from pharmacy testing also encompass a more significant portion 
of asymptomatic and mildly symptomatic persons who may not 
necessarily approach a hospital or clinic.

The increase in diagnostic diversity means there is the chance to 
monitor ever-varying influenza occurrences at the population level 
and the dynamics in real-time, which are not reflected in doctor’s 
offices or hospitals. However, when this artifact is combined 
with demographic, vaccination, and comorbidity information, 
pharmacy test data can provide good material for predictive 
analytics. As such, these models can predict likely exposure to 
the virus and promote vaccination and safe practices for those 
still vulnerable.

Objectives of the Study

The purpose of this paper is to advance and implement models 
for the diagnosis of influenza breakthrough disease using real-
world pharmacy testing data. 

We are interested in the following aims

•	 To develop and train predictive models for the probability of 
emergence of superspreading using own and external factors

•	 To compare and estimate the accuracy of the models using 
the test databases from the pharmacies; 

•	 To apply the developed models in real-life settings of 
pharmacies for risk assessment.

Using expandable data transfer and cloud-based setup, Choate 
fills the gap between applying data analysis in public health 
and clinics. All in all, the findings of this research provide a 
foundation for enhancing influenza monitoring and various 
individual approaches to prevention and creating effective vaccine 
distribution and marketing strategies in the retail healthcare 
network of the United States.

Related Work

Overview of Existing Predictive Models for Infectious Diseases

In recent years, it has proved itself an important tool in tracking 
and monitoring infected diseases through predictive models, 
especially with the current technological advances in machine 
learning and big data analysis. For decades, classical models 
like compartmental models like SIR, SEIR, and others have been 
used to estimate disease transmission at the population level. 
In more recent years, there has been increased consideration of 
data-driven approaches to help collect more comprehensive and 
realistic data, such as EHRs, social media, and mobility data, to 
anticipate outbreaks and recognizeg those at risk [4-6].

Influenza, in particular, has a number of machine learning-based 
models to predict whether one is likely to get infected, the chance 
of hospitalization, and even the trend of influenza. Methods like 
logistic regression, decision trees, support vector machines, and 
deep learning networks have been practiced in several studies. 
For instance, the models developed based on CDC influenza 
data and weather information have given fairly good predictions 
for weekly flu incidence. Other works have used information 
about the various symptoms acquired from mobile applications, 
wearing devices, and web search trends to predict flu activity on 
regional and national levels. However, these strategies provide 
more general information about the levels of risk instead of 
identifying the risk for specific patients, especially if they get 
vaccinated.

Limitations in Prior Studies

Although substantial achievements have been made in the 
modeling of psychiatric disorders, most of the existing works 
are associated with limitations that reduce their usefulness for 
deployment in outpatient clinics. First, most predictive models 
depend on the data collected from centralized databases like 
hospital admission or state-reported cases, which are inaccurate 
and always delayed. This delay leads to slow detection and 
subsequent steering of its actions in line with emerging trends 
and patterns. Second, few models have been tested with more 
detailed retail or outpatient testing data, even though the latter 
is becoming a point of entry for patients with flu symptoms.

More importantly, limited research has been carried out on the 
concept of breakdown infections, which could be an intellectual 
deficit. Most are based on the overall flu or flu transmission levels 
without making distinctions for vaccinated or non-vaccinated 
persons. Hence, they can seldom be used to evaluate remedy 
efficacy or improve the risk messaging of vaccinated persons. 
One means by which MRLs could be strengthened is through the 
enhancement of model deployment studies, which is missing 
in this study. While models were shown to succeed in offline 
assessments, they are translated into clinical practices and 
especially into off-site ones such as pharmacies inadequately.

Contribution of this Paper

In this regard, the present work contributes to the development 
of the identification of infectious disease modeling in several 
respects. First, it targets predicting the influenza breakthrough 
infection, an untapped area of research, even though the number 
of such infections is increasing yearly. By training models on real-
world pharmacy testing data, we present a new and important 
data stream that includes diagnostics, vaccination history, and 
risk factors on an individual level at the population scale. Not 
only does this data source offer timeliness, which is a virtue 
normally associated with centralized surveillance systems, but 
also granularity, which is usually lacking in centralized surveillance 
systems.



3 Appl Med Res • 2023 • Vol 10 • Issue 1

Citation: Vijitha Uppuluri (2023) Design and Deployment of Predictive Models for Influenza Breakthrough Infections using Pharmacy Test Data. Applied 
Medical Research. AMR-1079. 

Second, multiple models are evaluated, including logistic 
regression, random forest, XGBoost, etc. After that, an absolute 
model assessment of multiple folds cross-validation and validation 
in real-life parameters is performed. The first model yielded the 
best result of 0.90 ROC-AUC and was implemented into a live 
system installed at various retail pharmacies. Such an approach 
is more practical than the majority of the prior works, which 
either are theoretical or emphasize retrospective data analysis.

Lastly, the mentioned approach illustrates that the community 
data and the computerized AI model can help improve the 
decision-making process in pharmacy. Our system updates the 
risk scores of breakthrough infections and assists pharmacists and 
clinicians in filtering out and making recommendations based on 
high-risk patients. The contribution of this paper comes not only 
in the form of model development but, more importantly, in the 
reproduction of a model for health policy implications in the case 
of vaccine-preventable diseases.

Immunological Mechanisms Influencing Breakthrough Infections 
in the Context of Bacterial, Protozoan and Viral Vaccines

Figure 1: Immune Pathways Affecting Vaccine Breakthrough 
Infections

Immune Response and Vaccine Efficacy

The diagram depicts the interaction between components of 
the immune system-most notably CD8+ T cells, CD4+ T cells, 
and B cells and how they collectively work to produce specific 
antibodies against vaccines or pathogens. These antibodies are 
essential in the reduction of bacterial load and disease severity. 
Nonetheless, the diagram highlights that drug resistance and 
vaccine breakthrough infections are still possible even with these 
immune defenses [7].

This is most striking in those with compromised immune responses 
or where the pathogen has developed strategies to evade immune 
detection. Loss of vaccine effectiveness can be due to lowered 
antibody levels, failure to activate T cells, or pathogen immune 
evasion. When designing and testing any predictive system to 
identify at-risk individuals, these should be considered.

Role of Coinfections and Protozoa

The bottom half of the figure highlights how coinfections with 
other pathogens and protozoa can undermine the immune 

response to vaccines. Such concurrent infections can prevent 
the activation of immune cells, thus lowering antibody levels 
and T-cell-mediated immunity. This results in reduced vaccine 
efficacy and increased susceptibility to breakthrough infections.

This is especially applicable in actual pharmacy data, where 
comorbidities and concurrent infections are usually present in-
patient histories. These factors are essential to integrate into 
feature engineering in predictive modeling, such as demonstrated 
in your system architecture. Knowledge of these underlying 
biological interactions lends richness to the interpretability of the 
model and ensures that predictions fit clinical and immunological 
realities.

Implications for Predictive Modeling

From a system design point of view, the biological processes 
demonstrated in this figure reinforce the necessity of including 
variables like time since the last vaccine dose, comorbidities, 
and demographic variables in machine learning models. These 
immunological findings justify why some features predict 
breakthrough infections and justify the inclusion of such attributes 
in feature engineering.

By capturing how immunologic complexity is translated into 
heterogeneous responses to vaccines, your predictive system 
is strengthened and better linked to biomedical data. This 
strengthens risk stratification accuracy and the potential public 
health benefit of the deployed system.

Data and Methods

Data Sources

For this study, data were compiled from multiple sources obtained 
commercially and from public health platforms to present a 
broad view of influenza testing, vaccination, and risk factors by 
individuals.

Pharmacy Testing Data were determined using self-collected, 
anonymous records from three large US retail pharmacy 
companies, CVS Health, Walgreens and Walmart, from October 
2022 to March 2023 [8-11]. These datasets contain over 1,200,000 
records from the rapid antigen and RT-PCR influenza tests and 
consist of testing location, testing result, testing date and time, 
and the basic identifiable data such as age, gender, zip code the 
patient belongs to, etc. All the patients’ information was stripped 
of any identifiers that could be matched to them based on the 
HIPAA guidelines and thus anonymized before any modeling 
activities were conducted.

This information from the CDC gave spatial context about the 
population density, age distribution, and the historical burden of 
the flu at a county level. These factors were integrated to improve 
spatial modeling and compensate for community-level factors.

The vaccination records data were collected from some pharmacy 
immunization records, and the CDC published the available 
immunization coverage data. Although detailed information 
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about individual vaccinations was not potentially available due 
to anonymization procedures, the pharmacy datasets contained 
dummy variables of patients’ self-reported influenza vaccination 
within the past year. Where linked electronic records on vaccination 
were available, further features such as the last vaccine given and 
the type of vaccine were used.

Preprocessing

Before model building, the raw data was processed through several 
preprocessing steps. All Personally Identifiable Information (PII) was 
masked, and a secure tokenization scheme was implemented to 
enable consistent yet anonymous tracking of patient encounters 
over repeated visits and test types. Duplicates, inconsistent test 
result formats, and incomplete records were removed.

Feature engineering was at the core of the modeling process. 

We Extracted Variables Like

•	 Vaccination status (binary: vaccinated/unvaccinated)

•	 Time since the previous vaccine dose (in days, binned as <90, 
90–180, >180 days)

•	 Age ranges (e.g., 0–18, 19–49, 50–64, 65+)

•	 Intensity of influenza transmission at the region level 
(estimated from CDC Flu View regional estimates)

•	 Self-reported presence of comorbidities (e.g., diabetes, 
asthma, cardiovascular disease)

All categorical features were one-hot encoded and continuous 
variables normalized to aid model convergence.

Predictive Modeling Approach

We applied and contrasted three supervised learning algorithms: 
Logistic Regression, Random Forest, and Extreme Gradient Boosting 
(XGBoost) using Python's scikit-learn and XGBoost libraries. The 
goal was to predict the risk of breakthrough infection, a positive 
influenza test in a patient who reported receiving an influenza 
vaccine in the same season.

The dataset was randomly split into 70% training and 30% test 
sets. We applied 5-fold cross-validation on the training set for 
model selection and hyperparameter tuning through grid search 
and Bayesian optimization (Optuna). 

The Evaluation Metrics Were

•	 Precision, to estimate the ratio of true positive breakthrough 
cases out of all predicted positives

•	 Recall, to estimate the sensitivity of the model to correctly 
classify breakthrough cases

•	 F1-score, as a harmonic mean between precision and recall

•	 ROC-AUC, to quantify the model's power to discriminate 
between breakthrough and non-breakthrough infections 
across thresholds

Feature importance scores were pulled out for the Random 
Forest and XGBoost models to determine the contribution of 
every variable to the predictive output.

System Deployment

An account to support the real-time risk scoring integrated into 
the patient record, the microservices are designed to run on 
the Google Cloud Platform (GCP) with the help of Kubernetes. 
The predictive model was delivered in the format of RESTful 
API and incorporated into the electronic health systems of the 
pharmacies [12-16].

The received test data from pharmaceutical facilities were 
real-time, and the resulting predictions were processed in 
milliseconds. The system identified High-risk individuals with 
their corresponding confidence score and short reasons such as 
“High risk due to time since last dose >180 days and age > 65”.

The deployment environment was kept fairly scalable both 
geographically in regard to regional pharmacies and in relation 
to others, using encrypted connections along with measures 
such as only allowing authorized persons access to critical data. 
Moreover, a monitoring dashboard was created to monitor 
the system performance along with variation through time of 
prediction and regional infection rate, which makes it possible 
to retrain the system based on the new virus behavior and 
seasonality.

Predictive Modeling System for Influenza Breakthrough 
Infections

Figure 2: Predictive Modeling System for Influenza Breakthrough 
Infections 
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Data Sources

They are the System's Main Input Streams

•	 Pharmacy Test Data (e.g., CVS, Walgreens, Walmart): 
Diagnostic test results for patients at pharmacy sites.

•	 CDC Demographic Data: Patient demographics include age, 
gender, and regional data.

•	 Vaccination Records: Aggregated information on patients' 
influenza vaccination records, e.g., date and vaccine type.

Data Processing and Modeling

This Part Reflects the Essence of data Science and the Machine 
Learning Process

•	 Data Cleaning & Anonymization: Guarantees that received 
data is organized, normalized, and free from Personally 
Identifiable Information (PII).

•	 Feature Engineering: Formulates salient features like 
vaccination status, age, comorbidities, and geography for 
modeling.

•	 Model Training: Employs machine learning algorithms such as 
Logistic Regression, Random Forest, and XGBoost to forecast 
the possibility of breakthrough infections.

•	 Model Evaluation: Evaluates model performance on metrics 
like ROC-AUC, F1-Score, Precision, and Recall.

Deployment Infrastructure

This Layer Enables Real-Time Operationalization of the Model

•	 Cloud Infrastructure (AWS/GCP): Deploys the model and 
manages scalability, data storage, and computation.

•	 Real-Time Risk Scoring Engine: Imposes the trained model 
onto incoming data to produce instant risk scores.

•	 Risk Stratification API: Streams the results to end-user systems 
through APIs for actionable decision-making.

End Users

These are the Systems or Staffs that Gain Value from the 
Predictions of the Model

•	 Pharmacy Interface (Pharmacists): Enables pharmacists to 
recognize patients who are at high risk and recommend care 
or indicate physician follow-up.

•	 Public Health Dashboard (CDC, State Health): Compiles the 
risk scores and trends to aid surveillance and public health 
interventions.

Results and Discussion

In order to test the performance of our predictive models, we 
used a hold-out sample including 120,000 patient encounters 
from CVS, Walgreens, and Walmart chains. These cases were 
taken between October 2022 and March 2023, when influenza 
activity is most likely to occur. This helped in including a diverse 
ethnical and geographical population to assess the general 
extensibility of the model.

Model Performance

In this study, we focus on using three supervised learning 
approaches, namely Logistic Regression, Random Forest, and 
XGBoost, to compare the accuracy of identifying breakthrough 
influenza infections among vaccinated individuals. The details 
of the performance of each model are presented in Table 1 
below.

Table 1: Model Performance on Test Set

Model Precision Recall F1-score ROC-
AUC

Logistic 
Regression

0.67 0.58 0.62 0.72

Random 
Forest

0.81 0.77 0.79 0.86

XGBoost 0.85 0.82 0.83 0.9

Figure 3: Graphical Represented Model Performance on Test Set

The performance showed a remarkably higher accuracy 
rate in the XGBoost model; the overall test had the highest 
precision, recall, and F1 measure, and the ROC-AUC was 0.90. 
These results indicate that using the proposed method has 
good discrimination between the condition of vaccinated 
patients who had contracted the flu and those who had not. 
XGBoost’s functionality in dealing with many trees, irrespective 
of the nonlinearity of the features and the function they were 
mapping into, and its ability to rank features made it ideal for 
this classification.

Feature Importance

So as to understand the model's decision-making, feature 
importance was examined using SHAP (Shapley Additive 
exPlanations) values and the Gini importance of the XGBoost 
classifier. The most important predictors of breakthrough 
infections are listed below: 
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Table 2: Feature Importance (Top 5 Predictors from XGBoost)

Feature Importance (%)
Time since last vaccine dose (>6 months) 29%
Presence of comorbidities 21%
Age over 65 17%
Geographic region 12%
Prior influenza infection history 9%

Figure 4: Graphical Represented Feature Importance (Top 5 
Predictors from XGBoost)

•	 The greatest contribution to model decisions was made by 
Time since the last vaccine dose (> 6 months), with 29% of 
the total feature importance. This is consistent with other 
literature describing waning vaccine-induced immunity.

•	 The presence of comorbidities (such as diabetes, asthma, 
COPD, and cardiovascular disease) accounted for 21%, 
emphasizing the susceptibility of immunocompromised 
patients.

•	 Age over 65 accounted for 17%, supporting CDC evidence 
that older individuals are at high risk, even after vaccination.

•	 Geographic area (categorized according to regional influenza 
transmission intensity) accounted for 12%, with high-incidence 
zip codes strongly correlated with breakthrough risks.

•	 Based on legacy test logs, past influenza infection history had 
a 9% contribution to suggest partial immunity or behavioral 
factors associated with reinfection risk.

These results provide evidence for targeted interventions, e.g., 
booster advice or clinical outreach, for those in high-risk groups 
by these characteristics.

Real-World Deployment

The XGBoost model was implemented as a cloud-based microservice 
in a pilot study at 215 pharmacies in California and Texas during the 
2022–2023 flu season. The model was embedded in the pharmacy 
testing process, providing real-time risk scores for every tested 
patient, which was only viewable by pharmacy clinicians.

During the five-month duration, the system identified around 
14,200 individuals at high risk for breakthrough infection. Of these:

•	 12.4% were positive for influenza after vaccination.

•	 Pharmacists utilized these alerts to inform patients to 
get instant medical consultation or antiviral therapy, 
particularly in high-transmission areas.

This intervention facilitated active case management, 
minimizing potential delays in treatment and hindering local 
transmission chains. Anecdotal feedback from the pharmacy 
workforce suggested that the alerts were straightforward to 
understand and imposed little overhead on clinical workflows.

Comparison with CDC Flu Surveillance

We correlated weekly numbers of flagged breakthrough cases 
against CDC FluView regional influenza positivity rates to test 
how effectively our model accounted for population-level flu 
dynamics. 

A Close Correlation Appeared upon Comparison

•	 A Pearson correlation coefficient (r) of 0.81, p < 0.001, 
between CDC flu rates and model outputs, signifies a 
robust and statistically significant relationship.

•	 Notably, our model identified increases in breakthrough 
cases 1–2 weeks prior to corresponding CDC regional 
positivity peaks, indicating that pharmacy-based predictive 
analytics can serve as an early warning system.

This result highlights the value of incorporating retail 
diagnostics into wider public health surveillance, especially in 
underreported or delayed data.

Ethical and Operational Considerations

All procedures for handling data and model deployment were 
HIPAA-compliant, and anonymized and tokenized data alone 
were utilized across the pipeline. Of note, no patient-level 
identifiable data were preserved post-inference. The system 
produced risk scores without retaining identifiable outputs, 
and results were applied solely at the point of care to inform 
pharmacy-based decisions.

In addition, we put in place governance practices around data 
usage, access control, and bias reduction. Model fairness audits 
revealed no meaningful performance differences by race or 
gender strata, although repeated audits are advisable for future 
growth. Community education sessions were conducted in pilot 
areas to inform patients of the use of AI in medical decision-
making [19-21].

Conclusion

The overall objective of this paper is to describe the development 
of a real-world predictive model for re-infection with the flu 
prevalent in community pharmacies’ diagnostic and vaccination 
records. Our evaluation showed that the proposed XGBoost 
model outperformed other less complex methods with the 
ROC-AUC of 0.90 and high precision, recall, and F1-score. In the 
following, this study makes several contributions to infectious 
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disease modeling, owing to its ability to harness a high volume 
of real-time pharmacy test data from over 1.2 million patient 
examinations across major chains throughout the United States. 

In 215 pharmacy locations, the pilot's success showed that 
machine-learning models are easily implementable at the point 
of care. Thus, of over 12% of people initially identified as high-risk 
patients, 15.5% tested positive for influenza despite vaccination, 
allowing pharmacists to oversee appropriate interventions such 
as further consultations or prescribing antivirals.

Consequently, this model provides a feasible and cost-efficient way 
of improving the methodology of pharmacy-based Surveillance 
and filling the gaps in the existing public health system. Due to 
latency and underreporting cases, pharmacy data also offer near 
real-time information on the community level that is often not 
easily obtainable from a centralized reporting system. Likewise, the 
high correlation with the CDC FluView trends (r = 0.81) indicates 
that retail-based prediction can act as a leading indicator of flu 
epidemics in those regions.

Future Work

There are several avenues for developing and further applying 
the existing predictive system presented in this paper. One of the 
major areas to consider would be feeding the model into state 
immunization registries that will further enhance risk stratification 
from actual vaccination schedules and dosages recorded in the 
registry. This would help to overcome a major weakness of the 
current model, which often uses self-reported data or only partially 
integrated vaccination cards.

The further development of the model itself, extending it to other 
respiratory illnesses such as RSV or SARS-CoV-2 (COVID-19), requires 
further research. Given that these viruses co-infect with influenza 
and display signs similar to those of influenza, a polynomial model 
that would help ascertain the probability of co-infection would 
prove effective in boosting the diagnostic aid and triage accuracy 
at the pharmacy level. It would also be consistent with further 
developing such a model to promote syndromic surveillance and 
constructive strategies for pandemic preparedness.

Lastly, we will discuss different self-learning methods that can be 
used to retrain the existing models over the incoming data streams. 
This would help avoid the diffusion of reduced model accuracy 
due to dynamics in viruses, the effectiveness of vaccines, and 
behaviours of the population. With these future improvements 
in place, the concept of an intelligent surveillance system will be 
integrated into the structure of retail pharmacy. It will offer timely, 
targeted public health interventions to its users.
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